FILE COPY Wigan^o Council

WIGAN M.B.C. PLANNING MEPT. APPLICATION REFERENCE A/13/78792_

PLACES DIRECTORATE

ECONOMY, TRADING AND INFRASTRUCTURE DIVISIONS

NEW ORGANICS WASTE TRANSFER STATION

APPENDIX C – NOISE IMPACT ASSESSMENT

Date of Submission: - 15th November 2013

Project Ref: H/WTS

Revision 0

OAUA1ODADWH

Contents Page

		Page Number
1.0	Introduction & Scope	3
2.0	Relevant National & Local Policies and Guidance	5
3.0	Methodology	9
4.0	Baseline Monitoring	11
5.0	Prediction Results & Assessment	14
6.0	Mitigation Measures	18
7.0	Assessment of Residual Noise Levels after Mitigation	20
8.0	Conclusion	21
Арре	endix A – Site & Monitoring Location Plan	
Арре	endix B – Site & Monitoring Location Plan	
Арре	endix C – Noise Monitoring Equipment Used & Weather Observations	
Арре	endix D – Calculation Spreadsheets	
Арре	endix E – Glossary of Acoustic Terms	
Appe	endix F – Reference List	

2

1.0 Introduction & Scope

- 1.21.1 The proposed waste transfer station is to be located adjacent to the existing waste recycling centre and Kirkless Landfill compound. The location and site layout of the proposal is detailed in Appendix 1.
- **1.31.2** The site chosen is located within an existing industrial estate with commercial premises in the immediate vicinity. The nearest residential receptor is located approximately 215m to the west on Hemfield Close.
- 1.41.3 The proposed waste transfer station is to be situated wholly within an industrial building except for the staff car parking, weighbridge and vehicle reception point, vehicle wash off, overnight vehicle storage and plant area.
- 1.51.4 The applicant has indicated that the facility will employ an air management system to control the odours within the building. For this purpose an air handling unit (AHU) is proposed and is to be situated to the rear of the proposed building on a concrete apron. This system has yet to be designed and no details exist relating to this system.

1.61.5 The facility is for the sole use of the Local Authority and will not take any third party co-mingled waste. The facility is therefore likely to operate normal working hours which are likely to be Monday – Friday 07:00 – 17:30 and Saturday (07:00 – 17:30) to take in missed collections through the week. This includes bank holidays. It is unknown if the AHU is to be operated through-out the night-time. For the purpose of the assessment the assumption is that the air handling unit will be in operation through the night.

- 1.71.6 The process has been described as the receipt of waste from Council refuse collection wagons from approximately 09:00 onwards, tipping off of refuse into a dedicated bay, handling of material by a front end wheeled loader and then loading of bulk loaders for dispatch to other suitable facilities from around 15:00 onwards.
 - **1.81.7** Refuse wagons will be cleaned and disinfected in a dedicated area that is depicted external to the building before returning to the Makerfield Way depot for overnight storage. No vehicles are expected to be stored on the site except for in an emergency.
 - 1.91.8 It is envisaged the facility will handle approximately 30,000 tonnes per annum, which would equate to approximately 120 tonnes on average per day. Peak levels in June/July and October would expect to reach approximately 250-300tonnes per day.
- 1 1.101.9 It is anticipated that to remove the waste would need between 2-5 bulk lorries per day, these are vehicle movements which are already on the wider public highway network but are being diverted from the existing Kirkless WTS to the proposed site. There is no intention to store waste in the building over-night but a contingency of a maximum of 48hours storage has been agreed as a suitable timeframe and is in line with good practice for handling of such a waster stream.

1.11.10 After discussing the project with the applicant the scope of works required included assessment of noise from vehicle movements arriving and departing the premises on Makerfield Way on existing sensitive premises (residential and commercial) during the daytime, noise from proposed plant and equipment (inc vehicle wash-off) during the daytime & night-time (AHU unit only) and noise from the use of front end wheeled loader within the building during the daytime.

2.0 Relevant Local & National Policies and Guidance

- 2.1 Details of noise guidance used to assess noise from proposed waste management facilities was previously outlined in PPG24¹. PPG24¹ has been withdrawn and replaced by the National Planning Policy Framework² (NPPF). In the absence of specific planning policy guidance on noise, it is considered for the purposes of this assessment that the principles established in the former PPG24¹ remain a useful aide to assess noise acceptability.
- 2.2 PPG24¹ outlined the considerations to be taken into account in determining planning applications both for noise-sensitive developments and those which generate noise.
- 2.3 PPG24¹ described how the planning system could be used to minimise the adverse impact of noise without placing unreasonable restrictions on development and business.
- 2.4 For industrial noise PPG24¹ stated that *"the likelihood of noise complaints from industrial development can be assessed, where the standard is appropriate, using guidance in BS4142:1990"*. It also directs the assessor to BS8233:1999³ but this standard advises BS4142:1997⁴ should be used for assessing industrial noise.
- 2.5 BS4142:1997⁴ relates to the assessment of noise where it occurs in an area of mixed residential and commercial properties. Given the character of the area of the proposed development, the standard is directly applicable.
- 2.6 In summary BS4142:1997⁴ compares source noise averaged over an hour during the day and 5 minutes at night, to the background noise level in the area (obtained in the absence of the source). Night time activity is not proposed and thus in this case, the hourly average sound energy needs to be compared with existing daytime background noise levels.
- 2.7 The standard is the recognised method for evaluating intrusive noise generally and not just industrial noise. The standard applied a penalty of 5dB to noise which has specific characteristics. This supports the importance of noise character.
- 2.8 The standard also identifies methods for measuring sources of noise and calculating their level. It also identifies methods for measuring the background noise level.
- 2.9 The standard states a positive indication that complaints are unlikely when average levels are 10 – 15dB below the background noise level and that where noise exhibits specified characteristics such as tonality and intermittency, complaints are clearly indicated when measured source noise levels exceed the background noise level by just 5dB.
- 2.10 A positive indication of complaint arises with a complaint prediction level of +10dB.
- 2.11 The change in planning guidance is important and considered below. The new NPPF² is relevant to the proposed activities at the proposed site

- 2.12 Until recently, the key guidance for noise was contained within PPG24¹. A significant overhaul in planning guidance has been made with the release of the NPPF² which formally withdraws PPG24¹ and many other key planning technical guidance notes.
- 2.13 The NPPF² describes that the purpose of planning is to contribute to the achievement of sustainable development and indicates a presumption in favour of sustainable development through plan making and decision taking. The NPPF² states it is a material consideration in planning decisions.
- 2.14 The NPPF² advises that the planning system should contribute to and enhance the natural and local environment by preventing new development from being put at unacceptable risk from, or being adversely affected by unacceptable levels of noise pollution.
- 2.15 The NPPF² further advises that to prevent unacceptable risks from pollution and land instability, planning decisions should ensure that new development is appropriate for its location. The effects (including cumulative effects) of pollution on health, the natural environment or general amenity, and the potential sensitivity of the proposed development to adverse effects from pollution, should be taken into account.
- 2.16 No explanation of what constitutes unacceptable risks or adverse affects from pollution is given. However, pollution is defined in the framework to include noise.
- 2.17 The NPPF² confirms that planning decisions should aim to avoid noise from giving rise to significant adverse impacts on health and quality of life as a result of new development; mitigate and reduce to a minimum other adverse impacts on health and quality of life arising from noise from new development, including through the use of conditions; recognise that development will often create some noise and existing businesses wanting to develop in continuance of their business should not have unreasonable restrictions put on them because of changes in nearby land uses since they were established; and identify and protect areas of tranquility which have remained relatively undisturbed by noise and are prized for their recreational and amenity value for this reason.
- 2.18 The first and second sentences in paragraph 123 of the NPPF² and considered above also refer to the Explanatory note to the Noise Policy Statement for England⁵ by DEFRA. The NPSE⁵ sets out the long term vision of government noise policy.
- 2.19 The NPSE⁵ applies to all noise apart from workplace (occupational) noise. The vision contains the following aims: avoid significant adverse impacts on health and quality of life from noise, mitigate and minimise adverse impacts on health and quality of life from noise and where possible contribute to the improvement of health and quality of life.
- 2.20 The NPPF² appears to consider the NPSE⁵ consistent with the framework principles. However, to 'promote good health and good quality of life the vision expresses this to be a long term desired policy outcome but uses language such as "promote" and "good" as it recognises that it is not possible to have a single

objective noise-based measure that is mandatory and applicable to all sources of noise in all situations.

- 2.21 Critically the NPSE⁵ does not clarify the conflict between the acceptability of one activity to have a negative noise impact on some individuals although this may be acceptable for the wider benefit to society. Industry should reduce noise where this is practicable and achievable but not restrict economic or sustainable growth and prosperity. This is a fine balance. The planning system should minimise adverse impact from noise without placing unreasonable restrictions on development.
- 2.22 For industrial noise, PPG24¹ referred the user to Annex 3 paragraph 19 and the use of BS4142:1997⁴ to assess the likelihood of complaints from industrial noise. As such it is assumed that BS4142:1997⁴ remains relevant to the assessment of noise from the proposed development site.
- 2.23 The NPPF² technical guidance on noise is presented as an annex to the NPPF² in Section 28 onwards it considers noise from minerals sites. There are clear similarities between planning for minerals extraction and waster management facilities operationally.
- 2.24 Technical guidance within the NPPF² recognises mineral operations will have some particularly noisy short-term activities that will not meet the limits. In considering activities to be undertaken at this site this will be true for some elements but significant controls may be applied including screening and the implementation of a noise management plan (NMP). A NMP may be required where the Environment Agency (EA) regulate the permit to operate and check compliance. It should be noted the NPPF² makes the point that Local Authorities should focus on the acceptable use of the land and the impact of that use rather than the control processes themselves where the use is regulated under pollution control regimes.
- 2.25 To help assess the noise impact both source data for relevant activities and a propagation model are needed in order to estimate the impact from a specific type of activity.
- 2.26 As the proposed use have many similarities with noise from open sites BS5228:2009-1⁶ is considered to be a relevant guidance on the subject. Appendix F in the standard gives details on how to estimate noise from sites and Appendix C provides sound level data for relevant pieces of equipment.
- 2.27 For the purpose of this assessment the methodologies in Appendix F (Haul Road, Mobile plant in a defined area and modified version of the Sound Power Calculation) have been used for arrival and departure of vehicles, the wheeled loader within the building and fixed plant (air handling unit & vehicle wash facilities).
- 2.28 The design targets for the noise levels are outlined in Table 2.1

Table 2.1 – Design Targets

Standard	Design Target
BS412:1997 ⁴	Residential
	L90 +5dB(A) daytime
	Equal to L90 – night-time
	Commercial
	L90+10dB daytime
BS8233:1999 ³	Residential
	Internal living room ≤40dB
	Internal bedroom ≤35dB
	<u>Commercial</u>
	Office space ≤50dB L _{Aeg.t}
WHO 1999 ⁷	External amenity areas <55dB L _{Aeg,t}

3.0 Methodology

3.1 This section outlines the methodology used to assess the impact of noise from the proposed development to existing noise sensitive properties. Table 3.1 outlines the steps involved and the outcome of that step.

Table 3.1 -

Step	Description	Outcome
1	Identification of noise generating activities likely to impact upon the surrounding existing sensitive receptors based on the information provided by the applicant	 The following noise generating activities were identified: - Arrival and departure of Refuse Wagons & Bulk Loaders. Manoeuvring of Wheeled Loader within the building. Use of air handling equipment. Use of vehicle wash-off area.
2	Identification of existing noise sensitive properties	 The following properties were identified as being noise sensitive: - Residential Properties on Hemfield Close & Hemfield Road (215m and 280m to the West respectively) Properties on Elmlea Gardens and Battersby Street (400m to the South) Bank House Farm, Hindley Farm and 'The Bungalow' (425m and 500m to the North respectively). Commercial Cinnamon Brow Business Park (150m to the South West). Hemfield Court (240m to the East) Hindley Golf Club (310m to the North East).
3	Undertake background noise monitoring at receptor locations or utilise existing relevant monitoring data to quantify baseline noise level conditions at identified receptors.	Existing data available for Elmlea Gardens and Hemfield Close to be used that was collected in to inform recent planning applications. Spot check measurements (30mins) at Eimlea Gardens and Hemfield Close and at Cinnamon Brow. Section 4.0 details the baseline data collected.
4	Selection of plant noise level data from Appendix C of BS5228:2009-1 ⁶	For the wheeled loader and refuse wagons entry 33 in Table C.6 and the log average entry 18 and 19 in Table C.8 have been used.

5	Selection of prediction methodology	The following methodologies have been
	from source to receiver	chosen to predict noise levels from
		relevant activities at the facility
		 Refuse vehicles and bulk loaders arriving & departing Haul road calculation described in Appendix F of BS5228:2009⁶
		Wheeled loader working within the building
		 Mobile plant in a defined area calculation described in Appendix F of BS5228:2009-1⁶
		Fixed air handling plant
		- Method for plant sound power. This
		method has been adapted to advise on
		maximum sound power level of the plant
		to be given to the design engineer as to
6	Dradiction of cound lovels from	not exceed recommended rating levels.
0	Prediction of sound levels from source to receiver using the selected method.	Section 5.0 details the results of the prediction.
7	Assessment of predicted results against BS4142:1997 ⁴ methodology and BS8233:1999 ³ noise level design targets	Section 5.0 details the assessment of the predicted results.
8	Recommend suitable mitigation	Section 6.0 details the recommended mitigation measures
9	Assessment of residual noise levels after mitigation	Section 7.0 details the assessment of residual noise levels after mitigation.
10	Draw down conclusions	Section 8.0 provides the conclusions.

4.0 Baseline Monitoring

- 4.1 This section details the results of baseline monitoring undertaken, the data already held on file for the locations spot checked.
- 4.2 Appendix 2, 3 and 4 provide details of equipment used and weather observations during the monitoring visit spot checks and raw tabulated data.
- 4.3 Table 4.1 details the aggregated 15minute daytime measurement results for each identified location. The locations of the monitoring positions are provided on the plan in Appendix 1.
- 4.4 Location 1 is adjacent to Elmlea Gardens in the bottom corner of the new car park serving the Council Depot. At this location the noise climate was dominated by plant noise at Morrison's. There were also several vehicle movements from Council vehicles at the depot. Bird song and pedestrians talking along the public footpath were also noted.
- 4.5 Location 2 was situated on derelict land to the rear of properties on Hemfield Close. The location was heavily vegetated and there was a bund screening the houses with only the tops of the houses visible through the vegetation. The noise climate at this location consisted of distant road traffic, aircraft flyovers, the landfill gas flare and intermittent bangs from the wider estate. Birdsong was also noted.
- 4.6 Location 3 was adjacent to entrance to Cinnamon Brow Business Park. The noise climate at this location consisted of road traffic to the Business Park and Council Recycling Centre. A pressure washer was also observed being used at a business for the majority of this measurement.
- 4.7 Table 4.2 details other daytime background measurements measured by various third parties as part of other planning application in the area. These have been included to provide extra data to ensure a robust background monitoring assessment. The data is presented as in the original report and the source is credited.
- 4.8 No night-time monitoring has been undertaken at the identified receptors. Third party data for the nearest residential properties on Hemfield Close is available and this has been used. The night-time data is for use in the assessment of the maximum plant noise levels for the air handling unit required. Table 4.3 details this third party measurement data. The data is presented as in the original report and the source is credited.

Position	Date	Start Time	LAsg(00:15:00)	LAF(max)	LAF(min)	LASO	L _{A10}
Land adjacent		12:13:11	44.4	58.0	39.8	41.9	46.2
		12:28:11	46.9	66.8	39.7	42.3	48.8
	21/9/2012#	12:43:11	46.2	65.2	39.9	42.3	54.0
to Elmiea		12:58:11	50.2	72.7	40.8	43.9	53.0
Gardens - L1		11:45:33*	48.7	57.2	43.9	46.1	51.1
	7/10/2013	11:58:19	48.7	58.8	43.7	45.5	50.8
		12:13:18	49.6	63.2	43.2	45.0	52.4
·····	Logari	thmic Average	48.2	66.4	41.9	44.1	51.5
		07:03:07	49.2	62.1	42.7	44.5	53.6
	1/5/2013**	07:18:07	47.3	61.5	41.7	43.4	50.6
		07:33:07	47.4	60.3	40.6	43.1	50.8
-		07:48:07	47.2	63.2	40.7	42.9	50.6
Land adjacent to Hemfield		14:41:43	45.5	63.9	37.5	47.7	40.3
Close-L2		14:56:43	42.8	61.2	35.3	46.3	38.1
		15:11:43	42.3	62.7	36.2	38.3	44.1
		15:26:43	45.5	68	35.8	38.5	45.8
	7/10/2013	13:00:06	53.1	72.4	39.7	46.2	40.7
	1/10/2013	13:15:06	44.3	58.0	40.0	46.1	41.1
	Logarit	hmic Average	47.7	65.6	39.7	44.6	48.4
Adjacent to		13:36:54	52.6	66.2	41.1	44.6	56.4
Cinnamon Brow Business Park – L3	7/10/2013	13:51:54	54.7	65.6	43.6	48.5	58.3
	-	thmic Average	53.8	65.9	42.5	47.0	57.5

Table 4.1 – Daytime Measurement Results

These measurements were taken in the assessment of A/12/77282

These measurements were taken in the assessment of A/13/77931

* Measurement duration was 00:08:12 due to battery failure

Table 4.2 – Daytime Third Party Measurement Results

			Noise impact assessment for proposed European Metal Recycling (EMR) Ltd facility at Hemfield Road, Wigan						
Data Source	Report Date	Report Date		abruary 2013					
	Prepared By		MAS	MAS Environmental					
	Report Refe	rence	MAS/EMR/DTB/130213						
Position	Date	Start Ti	me	LAng	L _{AF(max)}	L _{AF(min)}	LASO	LA10	
Monitoring		10:50	:18*	49.0	-	-	40.0	53.0	
Point 2 – Equivalent to L2	12/6/12	11:00:0		45.0	-	-	39.0	48.0	
Monitoring		11:12:	53 ^{#^3}	43.0	-	-	38.0	47.0	
Point 3 – Equivalent to		11:20:	03 ^{#^4}	44.0	-	-	39.0	47.0	

L2							
	Logari	thmic Average	45.9			39.1	49.6
Monitoring Point 8 – Equivalent to Hindley Golf Club (No spot check undertaken)	12/6/12	13:01:00 ^{#^5}	47	-	-	41	49
	Logari	thmic Average	47		14.	41	49

Logaritrimic Average | 4/ 1 Measurement duration # 00:10:00; #*2 00:07:00; #*3 00:15:00; #*4 00:15:00; #*5 00:10:00

Table 4.3 – Night-time Third Party Measurement Data

	Report Tit		Make Asse	ess Materials F erfield Way, Hig essment				loise
Data Source	Report Date Febr			uary 2013				
	Prepared	By	SLR					
	Report Re	ference	403.	00197.00870				
Position	Date	Start T	Ime	LAss(00:05:00)	L _{AF(max)}	L _{AF(min)}	LA90	LA10
		01:2	0	33.3	50.7	-	31.2	34.4
Belle Green		01:2	5	33.0	38.0	-	31.9	33.8
Lane –		01:3	0	32.3	37.6	-	31.2	33.1
Equivalent to		01:3	5	32.2	35.3	-	31.1	32.9
L2		01:4	0	32.8	43.9	-	31.6	33.4
		01:4	5	33.4	35.9	-	32.2	34.3
Log	arithmic Av	erage		32.9	44.3	 :	31.6	33.7
		01:0	0	37.0	42.6	-	31.1	39.8
		01:0	5	37.4	42.9	-	31.0	39.9
		01:1	5	36.0	41.7	-	31.0	39.8
Destallares		01:2	0	38.3	44.1	-	31.6	40.1
Bank House		01:2	5	34.8	41.5	-	31.7	39.5
Farm –		01:3	0	39.0	42.0	-	32.3	40.1
Equivalent to L2		01:3	5	32.3	41.4	-	31.0	32.8
LZ		01:4	0	38.9	50.3	-	32.0	40.0
		01:4	5	35.8	58.5	-	31.1	39.2
		01:5	0	38.2	42.1	-	31.3	39.8
		01:5	5	35.5	43.6	-	30.7	39.4
Log	arithmic Av	erage		37.0	49.5	- `	31.4	39.4
	1	00:4	5	36.3	50.9	-	35.1	37.1
Hamfield		00:5	0	36.3	38.9	-	35.4	37.0
Hemfield Road –		00:5	5	35.9	39.7	-	34.7	36.8
Equivalent L2		01:0	0	35.0	37.5	-	34.2	35.7
eguvattik EZ		01:0	5	34.8	44.2	-	33.8	35.6
		01:1	0	36.0	53.2	-	33.9	37.0
Log	arithmic Av	erage		35.8	48.0	-	34.6	36.6

5.0 Prediction Results & Assessment

- 5.1 This section presents the results of the noise predictions based on BS5228:2009-1⁶ methodologies identified in Section 3.0. Appendix 5 contains the calculation sheets for the predictions.
- 5.2 Table 5.1 contains the maximum plant noise level for the AHU for consideration by the air handling design engineer to aid plant selection. Levels are provided for each location but the lowest overall maximum is recommended so as to ensure compliance with recommended Rating Levels.
- 5.3 Table 5.2 and 5.3 contains the daytime and night-time predicted noise levels at the identified locations (L1 L3) for the use of the wheeled loader with no building attenuation, vehicle movements along Hemfield Road, vehicle wash-off area (using suggested minimum L_{wA} level at the three locations) and air handling unit (using the minimum L_{wA} level at the three locations). The night-time predicted level includes only the air handling unit.

Table 5.1 – Recommended Air Handling Unit & Vehicle Wash-off Plant Sound Power Level (L_{wA})

Source	Maximum L _{wA}	
Vehicle Wash-Off (07:00 – 17:00)	85dB	
AHU Daytime (07:00 – 23:00)	90dB	
AHU Night-time (23:00 – 07:00)	90dB	

Table 5.2 – Daytime Predicted Noise Level

	Predicted LAeg(01:00:00)					
Source	L1 - Properties to South of Council Depot (i.e. Battersby St, Elmlea Gardens etc)	L2 – Properties to the West (i.e. Hemfield Close, Hemfield Road, DeTrafford Drive)	L3 - Cinnamon Brow Business Park			
Wheeled Loader	45.8dB	50.8dB	53.3dB			
Vehicle Movements	42.8dB	43.9dB	56.2dB			
AHU	25.0dB	30.0dB	33.0dB			
Vehicle Wash-Off	21.0dB	30.0dB	28.0dB			
Cumulative	47.6dB	51.7dB	58.0dB			

Table 5.3 – Night-time Predicted Noise Level

	Predicted LAeg(01:00:00)				
Source	L1 - Properties to South of Council Depot (i.e. Battersby St,		L3 - Cinnamon Brow Business Park		

	Elmlea Gardens etc)	DeTrafford Drive)	
AHU	25dB	30dB	N/A
Cumulative	25dB	30dB	N/A

5.4 The assessment of the predicted noise levels is undertaken by using the methodology set out in BS4142:1997⁴. Table 5.4 details the recommend Rating Levels based on the lowest backgrounds measured from measurements by us and third parties.

Table 5.4 – Suggested Rating Levels

Location	Recommended Daytime Rating Level	Recommended Night-time Rating Level
L1 - Properties to the South#	43dB	35dB
L2 - Properties to the West [#]	50dB	35dB
L3 – Cinnamon Brow [#]	55dB	N/A

The reculture index rating level is based on the lowest measured background Excerted as the is reacting any property.

The recommended rating level is based on the lowest measured background LA90 +10dB as this is commercial property.

5.5 The daytime rating levels are then compared to the cumulative predicted levels. Table 5.5 details this comparison.

Table 5.5 – Comparison of Predicted Level and Recommended Rating Level in the Daytime

Location	Predicted Cumulative Level	Recommended Daytime Rating Level	Difference		
L1 – Properties to the South	48dB	47dB	+1dB		
L2 – Properties to the West	52dB	43dB	+9dB		
L3 – Cinnamon Brow	58dB	55dB	+3dB		

- 5.6 In all cases during the daytime the recommended rating level is not met. Therefore mitigation measures are needed to reduce the levels to the recommended levels.
- 5.7 The predictions can be considered worst case as the assumption in the cumulative prediction is that the maximum number of vehicles arrive and depart in the hour, the vehicle wash-off is operational, the wheeled loader is operation (without the benefit of a building) and the air handling units are operational (without the benefit of screening from the proposed building).
- 5.8 However, to ensure Rating Levels are met mitigation will be recommended for the largest contributing elements.
- 5.9 Table 5.6 details the comparison of the night-time rating level with the predicted noise level from the air handling unit.

Location	Predicted Cumulative Level	Recommended Daytime Rating Level	Difference		
L1 – Properties to the South	30dB	35dB	-5dB		
L2 – Properties to the West	25dB	35dB	-10dB		
L3 – Cinnamon Brow	N/A	N/A	N/A		

Table 5.6 - Comparison of Predicted Level and Recommended Rating Level in the Night-time

- 5.10 The based on a L_{wA} of 90dB for the air handling unit the predicted noise level is calculated to be less than the recommended Rating Level. In reality, due to screening at properties to the South from existing industrial buildings the level is likely to much lower than predicted; therefore the prediction can be assumed to be worst case.
- 5.11 The level predicted to properties in the West already benefit from a nominal screening correction due to the existing earth bund to the rear of properties on Hemfield Close and existing industrial buildings on Cinnamon Brow Business Park. It is again felt the screening correction is an under-estimation of the likely reductions and the prediction can be considered worst case.
- 5.12 Properties to the North and East are at a greater distance than the properties to the West so therefore the natural attenuation due to distance will ensure that Rating Levels are met. Monitoring data is available for Bank House Farm (to the North) and the recommended night-time Rating Level (35dB) will be achieved.
- 5.13 For the relevant receptors basic break-in calculations and comparison of the predicted levels with the external amenity calculations have been undertaken. For external break-in calculations nominal attenuation of the building envelope with a window or door open for partial ventilation is assumed to be 10dB.
- 5.14 Table 5.7 details the break-in calculation results.

Location	Worst Case Predicted Cumulative Level LAseq.t	Building Envelope Attenuation	Predicted Internal Level L _{Aeq.t}		
L1 – Properties to	48dB		38dB		
the South	25dB		15dB		
L2 – Properties to	52dB	-10dB	42dB		
the West	30dB		20dB		
L3 – Cinnamon Brow	58dB		48dB		

Table 5.7 – BS8233:1999³ Calculation

5.15 Table 5.8 details the comparison of the predicted internal levels with the relevant design targets in BS8233:1999³. The reasonable level specified in the standard is the preferred design target.

Location	Predicted Internal Level L _{Aeg,t}	Design Target Level L _{Aeg,t}	Difference
L1 – Properties to	38dB	40dB	-2dB
the South	15dB	35dB	-20dB
L2 – Properties to	42dB	40dB	+2dB
the West	20dB	35dB	-15dB
L3 – Cinnamon Brow	48dB	50dB	-2dB

Table 5.8 – Comparison of Predicted Internal Level with BS8233:1999³ Design Target

- 5.16 The comparison with the internal level standard shows that for L1 and L3 the design targets should be achieved without the need for mitigation during the daytime. L2 however does not meet the standard. It should be noted that the predicted levels are worst case and the levels experienced are likely to be less. However, mitigation measures will still be recommended for the appropriate sources of noise.
- 5.17 For L1 and L2 the night-time predicted internal level complies with the recommended design target.
- 5.18 BS8233:1999³ does not provide a standard for external amenity spaces. WHO 1999⁷ provides guidance on external amenity areas and states that external levels in amenity areas should be around 50dB L_{Aeq,t} with a upper maximum of 55dB L_{Aeq,t}.
- 5.19 Comparison of the predicted levels in Table 5.5 with this level shows that the external amenity area level will be achieved for locations L1 and L2. L3 has not been considered due to its commercial nature.
- 5.20 A comparison of the log average measured L_{Aeq,t} with the predicted levels from the worst case situation at the site shows that the for L1 the predicted LAeq,t is equal to the existing L_{Aeq,t}. L2 and L4 show an increase of +3dB and +4dB on the log average measured LAeq's. This difference is likely to be just perceptible to the occupiers of such spaces.
- 5.21 In summary the three assessment methods used to quantify the impact (BS4142:1997⁴, Comparison with BS8233:1999³ & WHO 1999⁷ design standards and comparison with existing L_{Aeq,t}) shows that impact could be characterised as being minor. However, BS4142:1997⁴ is the preferred assessment method and the result of that assessment indicates mitigation is required to reduce the predicted cumulative noise level.
- 5.22 Section 6.0 discusses suitable mitigation measures.

6.0 Recommended Mitigation Measures

- 6.1 Mitigation is recommended to reduce the predicted noise levels to the design target specified in Table 5.4.
- 6.2 Mitigation is not required for the air handling system as long as the L_{wA} of the proposed air handling system does not exceed 90dB. It is recommended once the planning permission is secured and the air handling system is being specified Business Compliance and Improvement are consulted to ensure the recommended L_{wA} is achieved.
- 6.3 It is my view that the level of 90dB L_{wA} will not be an insurmountable constraint on the final system. Furthermore, additional sound reduction techniques can be employed to help to reduce the noise level to the L_{wA} specified.
- 6.4 Mitigation is not required for the vehicle wash-off plant as long as the L_{wA} of the system does not exceed 85dB. I would however recommend that the wash off area is located within the building thus reducing this impact even further.
- 6.5 A review of the prediction calculations in Appendix 5 shows that the two major contributing elements are the vehicle movements to and from the site and the wheeled loader movements.
- 6.6 It is unlikely that changes can be made to vehicles that are servicing the site and as previously sytated thesed vehicles are already entering the area at the site next adjacent. Therefore, the only option is to mitigate the wheeled loader activity with the use of a building. A building is required for the facility to ensure odours are controlled and is therefore not an insurmountable constraint.
- 6.7 Based on the cumulative noise level it is recommended the minimum weighted composite sound reduction index (Composite SRI) for the building is 20dB $R_{w(Comp)}$. It is recommended Business Compliance and Improvement is consulted to ensure that the recommended $R_{w(Comp)}$ specified is achieved with the final building design. It is my opinion that 20dB $R_{w(Comp)}$ is achievable for an industrial type building.
- 6.8 Table 6.1 gives a summary of the recommended mitigation measures for ease of reference for each indentified noise source.

Activity	Recommend Miligation Specification
Wheeled Loader	Minimum building composite Rw(Comp) 20dB
Service vehicles	No mitigation recommended
Air handling system	Maximum L _{wA} 90dB
Vehicle wash-off	Maximum L _{wA} 85dB [#]
	It is recommended the vehicle wash-off facility is
	located internal to the building if other constraints
# assuming the facility is located evid	allow it.

Table 6.1 – Summary of Mitigation Measures

assuming the facility is located external to the building.

6.9 Section 7.0 now discusses the residual noise levels if the above recommended mitigation is implemented.

7.0 Residual Noise Levels

7.1 Table 7.1 documents the residual noise levels after the mitigation recommended in Table 6.1 has been implemented.

Table 7.1 – Residual Noise Levels

Location	Residual Level after Mitigation	Recommended Daytime Rating Level	Difference		
L1 – Properties to the South	43dB	47dB			
L2 – Properties to the West	44dB	43dB	+1dB		
L3 – Cinnamon Brow	56dB	55dB	+1dB		

- 7.2 Table 7.1 shows that for L2 the recommended Rating Levels is met. For L1 & L3 the recommended Rating Level is exceeded by 1dB.
- 7.3 As previously mentioned the assessment has assumed that all the vehicles servicing, the bulk loaders that take away the waste arrive, the wheeled loader is in operation, the vehicle wash-off is in operation and the air handling unit is in operation, all at once.
- 7.4 It is unlikely the above scenarios will ever occur as the physical footprint of the site can only accommodate 3 vehicles tipping at once and several of the bulk loaders won't arrive until after the final load has arrived and been bulked up.
- 7.5 The contributing factor to this exceedance is the vehicle movements. The closest office already experiences HGV vehicle movements along this road as these arrive and depart Cinnamon Brow Business Park currently.
- 7.6 Therefore an exceedance of 1dB on the rating level for L1 and L3 is considered well within the margins of error.
- 7.7 A suitably worded planning condition can be recommended to require maximum L_{wA} for specific plant and composite insulation values of the building to protect the surrounding receptors from excess noise.

8.0 Conclusion

- 8.1 An assessment to predicted and quantify the impact of the likely noise levels from the waste transfer station has been undertaken.
- 8.2 The assessment indicated that without mitigation (i.e. a building) the cumulative noise from the facility would exceed the recommended Rating Levels.
- 8.3 Mitigation has been recommended as detailed in Table 6.1. An assessment of the residual levels after mitigation has been undertaken and apart from L3 (Cinnamon Brow Business Park) all receptor locations meet the recommended standard.
- 8.4 Therefore, noise is not a constraint in granting planning permission for this development subject to suitable conditions commensurate with the mitigation measures recommended.

Appendix A – Site Layout Plan

H/WTS/TDS/NIA/0

Appendix B – Location Plan

H/WTS/TDS/NIA/0

Appendix C – Noise Monitoring Equipment Used & Weather Observations

Monitoring Undertake 7 October 2013

Weather Noted		
Dry, overcast and mild. Wind <5m/s		
Equipment	Serial Number	
Nor140 Sound Level Meter (SLM)	1404936	
Nor1209 Microphone	14369	
Nor1251 Field Calibrator	33331	
Mounting Tripod		

Monitoring Undertaken 1 May 2013

Weather Noted		
Morning - Dry, clear, wind from west 1	-2m/s	
Afternoon - Dry, overcast and light we	sterly wind <5/ms	
Equipment	Serial Number	
B&K 2238 SLM	2368857	The second second
B&K4188 Microphone	2379414	1997
B&K 4231 Field Calibrator	1838959	
Mounting Tripod		

Monitoring Undertaken 21 September 2012

Weather Noted		
Dry, cold and light breeze		
Equipment	Serial Number	
B&K 2250 SLM	2619965	
B&K <insert> Microphone</insert>	2621142	
B&K 4231 Field Calibrator	Not noted	
Mounting Tripod		

The equipment and weather conditions can be referenced from the reports themselves and are not replicated here.

Method of equipment Set-up

In all cases the following setup procedure was followed

- 1. The SLM and microphone are connected (combination referred to as SLM)
- 2. The SLM mounted onto tripod and microphone height set 1.2 1.5m from the ground.
- 3. The SLM is turned on and the specific procedure for the field calibration is followed. For the B&K equipment the reference tones was 94.0dB ± tolerance, for the Nor140 the reference tone was 114dB ± tolerance. In all cases the SLM displayed a level within the tolerance allowed.
- 4. A windshield was fitted in all cases.
- 5. The SLM was set to run using either 1 second or 1 minute logs.
- 6. The SLM was checked for drift at the end of each measurement using the field calibrator. The measurement was only saved if the drift was within ±0.2dB.

Appendix D – Calculation Spreadsheets

Wheeled Loader Calculation Sheet

Location 1

	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage No.	Description									
1	Sound pressure level									
	selection	92	84	83	77	76	74	71	62	93.354239
2a	Calculation from									
	Sound Pressure to	100								
	Sound Power	120	112	111	105	104	102	99	90	121.35424
2b	Source - Receiver									
	distance	355	355	355	355	355	355	355	355	
2c	Traverse Length	20	20	20	20	20	20	20	20	
3	Distance correction	59.00457	59.00457	59.00457	59.00457	59.00457	59.00457	59.00457	59.00457	
4	Reflection correction	0	0	0	0	0	0	0	0	
5	Screening correction	5	5	5	5	5	5	5	5	
6	Resultant SPL	55.99543	47.99543	46.99543	40.99543	39.99543	37.99543	34.99543	25.99543	57.349672
	A-weighting correction	26.2	16.1	8.6	3.2	0	-1.2	-1	-1.1	
	Resultant LAeq	29.79543	31.89543	38.39543	37.79543	39.99543	39.19543	35.99543	27.09543	
7	Distance Ratio									
	Correction	0.056338	0.056338	0.056338	0.056338	0.056338	0.056338	0.056338	0.056338	
	Correction Factor (F)	1	1	1	1	1	1	1	1	
8	Duration of activity	1	1	1	1	1	1	1	1	
8	Equivalent on Time	1	1	1	1	1	1	1	1	
9	Correct percentage									
	on-time %	100	100	100	100	100	100	100	100	
10	Resultant LAeq									
	Correction	0	0	0	0	0	0	0	0	
11	Resultant LAeq	29.79543	31.89543	38.39543	37.79543	39.99543	39.19543	35.99543	27.09543	45.822801

H/WTS/TDS/NIA/0

Wigan

12	Resultant LAeq(16hr) correction	2.0412	2.0412	2.0412	2.0412	2.0412	2.0412	2.0412	2.0412	
13	Resultant LAeq(16hr)	27.75423	29.85423	36.35423	35.75423	37.95423	37.15423	33.95423	25.05423	43.781602
14	Required Rating Level									45
15	Building Attenuation									
	Requirement (Rw)									-1.2183983
16	Recommended									
	Building (Rw)									
	Required + 20%									-1.462078
17	Average Rw of									
	Industrial Building									20
18	Level with Specified									800 CONS.
	Composite Rw									23.8
										20.0

Location 2

	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage No.	Description									
1	Sound pressure level									
	selection	92	84	83	77	76	74	71	62	93.354239
2a	Calculation from									
	Sound Pressure to									
	Sound Power	120	112	111	105	104	102	99	90	121.35424
2b	Source - Receiver									
	distance	200	200	200	200	200	200	200	200	
2c	Traverse Length	20	20	20	20	20	20	20	20	
3	Distance correction	54.0206	54.0206	54.0206	54.0206	54.0206	54.0206	54.0206	54.0206	
4	Reflection correction	0	0	0	0	0	0	0	0	
5	Screening correction	5	5	5	5	5	5	5	5	
6	Resultant SPL	60.9794	52.9794	51.9794	45.9794	44.9794	42.9794	39.9794	30.9794	62.333639
	A-weighting correction	26.2	16.1	8.6	3.2	0	-1.2	-1	-1.1	
	Resultant LAeq	34.7794	36.8794	43.3794	42.7794	44.9794	44.1794	40.9794	32.0794	
7	Distance Ratio	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	

H/WTS/TDS/NIA/0

	Correction									
	Correction Factor (F)	1	1	1	1	1	1	1	1	
8	Duration of activity	1	1	1	1	1	1	1	1	
8	Equivalent on Time	1	1	1	1	1	1	1	1	
9	Correct percentage									
	on-time %	100	100	100	100	100	100	100	100	
10	Resultant LAeq(1hr)									
	Correction	0	0	0	0	0	0	0	0	
11	Resultant LAeq(1hr)	34.7794	36.8794	43.3794	42.7794	44.9794	44.1794	40.9794	32.0794	50.806769
12	Resultant LAeq(16hr)									
	correction	2.0412	12.0412	12.0412	12.0412	12.0412	12.0412	12.0412	12.0412	
13	Resultant LAeq(16hr)	32.7382	24.8382	31.3382	30.7382	32.9382	32.1382	28.9382	20.0382	39.645687
14	Required Rating Level									45
15	Building Attenuation									
10020	Requirement (Rw)									5.8067686
16	Recommended									
	Building (Rw) Required + 20%									6.9681224
17	Average Rw of									0.3001224
	Industrial Building									20
18	Level with Specified									20
	Composite Rw									30.8

	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage No.	Description									
1 2a	Sound pressure level selection Calculation from	92	84	83	77	76	74	71	62	93.354239
	Sound Pressure to Sound Power	120	112	111	105	104	102	99	90	121.35424

2b	Source - Receiver									
20	distance	150	150	150	150	150	150	150	150	
2c	Traverse Length	20	20	20	20	20	20	20	20	
3	Distance correction	51.52183	51.52183	51.52183	51.52183	51.52183	51.52183	51.52183	51.52183	
4	Reflection correction	0	0	0	0	0	0	0	0	
5	Screening correction	5	5	5	5	5	5	5	5	
6	Resultant SPL	63.47817	55.47817	54.47817	48.47817	47.47817	45.47817	42.47817	33.47817	64.832414
	A-weighting correction	26.2	16.1	8.6	3.2	0	-1.2	-1	-1.1	
	Resultant LAeq	37.27817	39.37817	45.87817	45.27817	47.47817	46.67817	43.47817	34.57817	
7	Distance Ratio		10 20000000 00000							
	Correction	0.133333	0.133333	0.133333	0.133333	0.133333	0.133333	0.133333	0.133333	
	Correction Factor (F)	1	1	1	1	1	1	1	1	
8	Duration of activity	10	10	10	10	10	10	10	10	
8	Equivalent on Time	10	10	10	10	10	10	10	10	
9	Correct percentage on-time %	100		100						
40		100	100	100	100	100	100	100	100	
10	Resultant LAeq(10hr) Correction	0		0	2		•	-		
4.4		0	0	0	0	0	0	0	0	50 0055 10
11 12	Resultant LAeq(10hr) Resultant LAeq(16hr)	37.27817	39.37817	45.87817	45.27817	47.47817	46.67817	43.47817	34.57817	53.305543
14	correction	2.0412	2.0412	2.0412	2.0412	0.0440	0.0440	0.0440	0.0440	
13	Resultant LAeq(16hr)	35.23697	37.33697	43.83697	43.23697	2.0412 45.43697	2.0412 44.63697	2.0412 41.43697	2.0412 32.53697	51.264344
14	Required Rating Level	33.23091	31.33091	43.03091	43.23097	40.40097	44.03097	41.43097	32.33697	51.204344 45
15	Building Attenuation									40
10	Requirement (Rw)									6.2643436
16	Recommended									0.2043430
	Building (Rw)									
	Required + 20%									7.5172123
17	Average Rw of									
	Industrial Building									20
18	Level with Specified									
	Composite Rw									31.3

Haul Road Calculation

	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage No.	Description									
- 1	Sound Pressure									
-	Level	82	79	78	75	71	72	66	62	85.64246
2	Sound Pressure									
	Level to Sound									
	Power conversion	110	107	106	103	99	100	94	90	113.6425
3	Number of vehicles									
	per hour	30	30	30	30	30	30	30	30	
4	Velocity (kph)	48	48	48	48	48	48	48	48	
5a	Distance from									
	Receiver to Haul									
	Road Centre	220	220	220	220	220	220	220	220	
5b	Distance Correction	23.42423	23.42423	23.42423	23.42423	23.42423	23.42423	23.42423	23.42423	
6	Reflection	•	•	•	0	•	0	0	•	
7	Correction	0	0	0	0	0	0	0	0	
(Screening Correction	5	5	5	5	5	5	5	5	
8a	Angle of view	180	180	180	180	180	180	180	180	
8b	Angle of view	100	100	100	100	100	100	180	100	
00	Correction	0	0	0	0	0	0	0	0	
9a	Resultant Leq	46.53457	43.53457	42.53457	39.53457	35.53457	36.53457	30.53457	26.53457	50.17703
9b	A-weighting	40.00401	10.00401	42.00401	00.00107	00.00401	00.00407	00.00101	20.00101	00111100
	correction	26.2	16.1	8.6	3.2	0	-1.2	-1	-1.1	
9c	Resultant LAeq	20.33457	27.43457	33.93457	36.33457	35.53457	37.73457	31.53457	27.63457	42.77655
Location 2										
	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage No.	Description									
H/WTS/TDS/NIA	/0					29				

Wigan

1 2	Sound Pressure Level Sound Pressure Level to Sound Power conversion	82 110	79 107	78 106	75 103	71 99	72 100	66 94	62 90	85.64246 113.6425
3	Number of vehicles									
	per hour	30	30	30	30	30	30	30	30	
4	Velocity (kph)	48	48	48	48	48	48	48	48	
5a	Distance from									
	Receiver to Haul									
	Road Centre	170	170	170	170	170	170	170	170	
5b	Distance correction	22.30449	22.30449	22.30449	22.30449	22.30449	22.30449	22.30449	22.30449	
6	Reflection									
	Correction	0	0	0	0	0	0	0	0	
7	Screening									
	Correction	5	5	5	5	5	5	5	5	
8a	Angle of view	180	180	180	180	180	180	180	180	
8b	Angle of view									
	Correction	0	0	0	0	0	0	0	0	
9a	Resultant Leq	47.65431	44.65431	43.65431	40.65431	36.65431	37.65431	31.65431	27.65431	51.29677
9b	A-weighting									
	correction	26.2	16.1	8.6	3.2	0	-1.2	-1	-1.1	
9c	Resultant LAeq	21.45431	28.55431	35.05431	37.45431	36.65431	38.85431	32.65431	28.75431	43.89629
Location 3					nacesone service off-files					

	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband	
Stage No.	Description										
1	Sound Pressure										
	Level	82	7 9	78	75	71	72	66	62	85.64246	
2	Sound Pressure										
	Level to Sound										
	Power conversion	110	107	106	103	99	100	94	90	113.6425	
3	Number of vehicles			200000000					••		
	per hour	30	30	30	30	30	30	30	30		
		00	00	00	00	50	00	50	50		

H/WTS/TDS/NIA/0

4 5a	Velocity (kph) Distance from Receiver to Haul	48	48	48	48	48	48	48	48	
	Road Centre	10	10	10	10	10	10	10	10	
5b	Distance correction	10	10	10	10	10	10	10	10	
6	Reflection									
	Correction	0	0	0	0	0	0	0	0	
7	Screening									
	Correction	5	5	5	5	5	5	5	5	
8a	Angle of view	180	180	180	180	180	180	180	180	
8b	Angle of view									
	Correction	0	0	0	0	0	0	0	0	
9a	Resultant Leq	59.9588	56.9588	55.9588	52.9588	48.9588	49.9588	43.9588	39.9588	63.60126
9b	A-weighting									
	correction	26.2	16.1	8.6	3.2	0	-1.2	-1	-1.1	
9c	Resultant LAeq	33.7588	40.8588	47.3588	49.7588	48.9588	51.1588	44.9588	41.0588	56.20078

Air Handling Unit Maximum L_{wA} Calculation

Stage	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
No.	Description Required SPL @									
1	Receptor Distance Source -									25
2a	Receiver	355	355	355	355	355	355	355	355	355
2b	Distance correction	51.00457	51.00457	51.00457	51.00457	51.00457	51.00457	51.00457	51.00457	51.0045671
3	Reflection correction									
4	Screening correction Calculated Maximum	5	5	5	5	5	5	5	5	5
5	SWL									89.0

Wigan

	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage										
No.	Description									
	Required SPL @									
1	Receptor									30
Weres	Distance Source -									
2a	Receiver	215	215	215	215	215	215	215	215	215
2b	Distance correction	46.64877	46.64877	46.64877	46.64877	46.64877	46.64877	46.64877	46.64877	46.6487692
3	Reflection correction									
4	Screening correction	5	5	5	5	5	5	5	5	5
	Calculated Maximum									
5	SWL									89.6
1	•									
Location	3									
Location	3 Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Location		63	125	250	500	1000	2000	4000	8000	Broadband
		63	125	250	500	1000	2000	4000	8000	Broadband
Stage	Frequency Description Required SPL @	63	125	250	500	1000	2000	4000	8000	Broadband
Stage	Frequency Description Required SPL @ Receptor	63	125	250	500	1000	2000	4000	8000	Broadband 33
Stage No. 1	Frequency Description Required SPL @ Receptor Distance Source -									
Stage No. 1 2a	Frequency Description Required SPL @ Receptor Distance Source - Receiver	150	150	150	150	150	150	150	8000 150	
Stage No. 1	Frequency Description Required SPL @ Receptor Distance Source - Receiver Distance correction									33
Stage No. 1 2a	Frequency Description Required SPL @ Receptor Distance Source - Receiver	150 43.52183	150	150	150	150	150	150	150	33 150
Stage No. 1 2a 2b	Frequency Description Required SPL @ Receptor Distance Source - Receiver Distance correction Reflection correction Screening correction	150	150	150	150	150	150	150	150	33 150
Stage No. 1 2a 2b 3	Frequency Description Required SPL @ Receptor Distance Source - Receiver Distance correction Reflection correction	150 43.52183	33 150 43.5218252							

Vehicle Wash-Off Maximum L_{wA} Calculation

	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage										
No.	Description									
	Required SPL @									450-450 Million (
1	Receptor									21
	Distance Source -									
2a	Receiver	355	355	355	355	355	355	355	355	355
2b	Distance correction	51.00457	51.00457	51.00457	51.00457	51.00457	51.00457	51.00457	51.00457	51.0045671
3	Reflection correction									
4	Screening correction	5	5	5	5	5	5	5	5	5
	Calculated Maximum									
5	SWL									85.0
Location	2									
Location	£									
Location	2									
Location	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage		63	125	250	500	1000	2000	4000	8000	Broadband
		63	125	250	500	1000	2000	4000	8000	Broadband
Stage	Frequency	63	125	250	500	1000	2000	4000	8000	
Stage	Frequency Description	63	125	250	500	1000	2000	4000	8000	Broadband 30
Stage	Frequency Description Required SPL @ Receptor Distance Source -									30
Stage	Frequency Description Required SPL @ Receptor	215	215	215	215	215	215	215	215	
Stage No. 1	Frequency Description Required SPL @ Receptor Distance Source -									30
Stage No. 1 2a	Frequency Description Required SPL @ Receptor Distance Source - Receiver	215	215	215	215	215	215	215	215	30 215
Stage No. 1 2a 2b	Frequency Description Required SPL @ Receptor Distance Source - Receiver Distance correction Reflection correction	215	215	215	215	215	215	215	215	30 215
Stage No. 1 2a 2b 3	Frequency Description Required SPL @ Receptor Distance Source - Receiver Distance correction	215	215	215	215	215	215	215	215	30 215

Wigan

	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage										
No.	Description									
	Required SPL @									
1	Receptor Distance Source -									28
2a	Receiver	150	150	150	150	150	150	150	150	150
2b	Distance correction	43.52183	43.52183	43.52183	43.52183	43.52183	43.52183	43.52183	43.52183	150 43.5218252
3	Reflection correction	40.02100	40.02100	-40.02100	40.02100	43.32103	43.32103	43.32103	43.32103	43.3210232
4	Screening correction	5	5	5	5	5	5	5	5	5
-	Calculated Maximum	0	0	5	5	5	5	5	5	5
5	SWL									84.5
										01.0
Cumulativ	/e Noise – No Mitigation									
Location	1									
-	Frequency	63	125	250	500	1000	2000	4000 8	000 Broa	dband
Stage										
No.										
1	Mobile Plant in building									45.8
2	Haul Road									42.8
3	Minimum AHU									25.0
4	Vehicle Wash									21.0
										47.6
Location 2	2									
	Frequency	63	125	250	500	1000	2000	4000 8	000 Broa	dband
Stage										
No.										
1	Mobile Plant in building									50.8
H/WTS/TDS/	/NIA/0					34				

2	Haul Road									43.9
3	Night-time AHU									30.0
4	Vehicle Wash									30.0
										51.7
Location 3										
	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage	5									
No.	Description									
1	Mobile Plant in building									53.3
2	Haul Road									56.2
3	Minimum AHU									33.0
4	Vehicle Wash									28.0
										58.0
Residual N	loise with Mitigation									

	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage										
No.	Description									
1	Mobile Plant in building									23.8
2	Haul Road									42.8
3	Minimum AHU									25.0
4	Vehicle Wash									21.0
										42.9
Location 2										
		2002200								
3-770	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage										
No.	Description									
H/WTS/TDS/	NIA/O					35				

Wigan

New Organics Waste Transfer Station Noise Impact Assessment Application submission - 15th November 2013

1	Mobile Plant in building	30.8	
2	Haul Road	43.9	
3	Night-time AHU	30.0	
4	Vehicle Wash	30.0	
		44.4	

	Frequency	63	125	250	500	1000	2000	4000	8000	Broadband
Stage										
No.	Description									
1	Mobile Plant in building									31.3
2	Haul Road									56.2
3	Minimum AHU									33.0
4	Vehicle Wash									28.0
										56.2

Appendix E – Glossary of Acoustic Terms

A-weighting – The adjustment undertaken to a linear sound level to account for the sensitivity of human hearing at different frequencies.

dB – Un-weighted linear measure of sound energy. It is the logarithmic ratio of two fractions (powers of quantity related to powers).

dB(A) - A-weighted measure of sound energy.

 $L_{Aeq,t}$ – The steady level of sound energy that contains the same amount of energy as the fluctuating time varying level under the same period of time.

 $L_{AF(max)}$ – The maximum RMS A-weighted sound pressure level occurring within a specified time period on a fast response time averaging.

L_{AF(min)} - The minimum RMS A-weighted sound pressure level occurring within a specified time period on a fast response time averaging.

 L_{90} – The sound level that is exceeded in the reference time period for 90% of the time. This is recognised background level used.

 L_{A90} - The A-weighted sound level that is exceeded in the reference time period for 90% of the time. This is recognised background level used.

 L_{10} - The sound level that is exceeded in the reference time period for 10% of the time. This is recognised background level used.

 L_{A10} - The A-weighted sound level that is exceeded in the reference time period for 10% of the time. This is recognised background level used.

 L_{wA} – The A-weighted sound power level on the decibel scale: L_{wA} = 10xLog₁₀ (w/w₀) where w0 is the reference power level of 10⁻¹² in Watts

RMS – Root mean square is the square root of the average square of the waveform over specified time period.

Watt - A unit of power. The energy contained in one joule when this is consumed over 1 second.

Appendix F – Reference List

- .1 Department of the Environment (1994). *Planning Policy Guidance Note 24 'Planning & Noise.* HMSO, London.
- 2. Department for Communities and Local Government (2012). *National Planning Policy Framework.* [Online] <u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/6077/2</u> <u>116950.pdf</u>
- 3. British Standards Institute. BS8233:1999 Sound insulation and noise reduction for buildings code of practice.
- 4. British Standards Institute. BS4142:1997 Method for Rating industrial noise affecting mixed residential and industrial areas.
- 5. Department for the Environment, Food and Rural Affairs (2010). *Noise Policy Statement for England*. [Online] <u>http://archive.defra.gov.uk/environment/guality/noise/policy/documents/noise-policy.pdf</u>
- 6. British Standards Institute. BS5228-1:2009 Noise and vibration control on construction and open sites.
- 7. World Health Organisation (1999). *Guidelines on community Noise*. [Online] http://www.who.int/docstore/peh/noise/guidelines2.html